Volume 6, Issue 2, June 2018, Page: 39-48
Ionization Structure of Heavy Metals for Planetary Nebulae
Belay Sitotaw Goshu, Department of Physics, Dire Dawa University, Dire Dawa, Ethiopia
Received: Apr. 21, 2018;       Accepted: May 25, 2018;       Published: Jul. 3, 2018
DOI: 10.11648/j.ajaa.20180602.12      View  714      Downloads  65
Abstract
The purpose of this work to reproduces the flux of lines emitted by the ionized gas, resulting in a good agreement between observed and predicted line fluxes, temperatures and electron density with the chemical abundances of ionic species with carbon and oxygen rich planetary. The model has been calculated using clouds of dust grains in order to calculate the electron temperature, density, and emission fluxes. The dust grain with polycyclic aromatic hydrocarbons (PAH) physics combined with thick shell geometry solves the problem of the heating and allows the fitting of fluxes lines, the electron temperatures and the ionization structure of the nebula. Among other lines, we determined line ratio of CIIλ4267A, [NII] λ5755A, 6584A, 6548A, [SII] λ4078A, 4070A, 6716A, and 6731A and compared the results with the observation data by changing the abundances of C, N, O and S, which are enhanced by a factor of 2. The analysis of the ionization structure of the gas, as well as this calculation of the flux of ions, is presented in this work. Therefore, our result revealed that flux lines like [NII] λ6584A, [OII] λ3727A+29A and [OIII] λ5007A greater than the observed fluxes. The nebulae are found to have low electron temperature than found by the previous author, but the electron density is high.
Keywords
Planetary Nebulae, Abundances, Photoionization, Star Evolution
To cite this article
Belay Sitotaw Goshu, Ionization Structure of Heavy Metals for Planetary Nebulae, American Journal of Astronomy and Astrophysics. Vol. 6, No. 2, 2018, pp. 39-48. doi: 10.11648/j.ajaa.20180602.12
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Garci’a-Hern’andez D. A., Manchado A., Garci’a-Lario P., Beni’tez Ganete A., Acosta-Pulido J. A., & Pi’erezGarci’a, Revealing the mid-infrared emission structure of IRAS 16594−4656 and IRAS 07027−7934, 2005, arxiv:astro-ph/0512064v1.
[2]
García-Hernández D. A., P. García-Lario P., B. Plez B., A. Manchado A., and D’Antona F., Lub J. and H. Habing H., 2005, Why are massive O-rich AGB stars in our Galaxy not S-stars?, arxiv:astro-ph/0509051v1.
[3]
Balick B., & Frank A., Shapes and Shaping of Planetary Nebulae, 2002, ARA&A, 40, 439.
[4]
Van Winckel H., Post-AGB Stars, 2003, ARA&A, 41, 391.
[5]
Morris M., Mechanisms for mass loss from cool stars, 1987, PASP, 99, 115.
[6]
Soker N., & Kastner J. H, Magnetic Flares on Asymptotic Giant Branch Stars, 2003, ApJ, 592, 498.
[7]
Garci’a-Segura G., Langer N., & Rozyczka M., Shaping Bipolar and Elliptical Planetary Nebulae: Effects of Stellar Rotation, Photoionization Heating, and Magnetic Fields, 1999, ApJ, 517, 767.
[8]
Pascoli G., On Planetary Nebulae formation, 1992, PASP, 104, 350.
[9]
Surendiranath R., Deconstructing IRAS 07027–7934, 2002, A&A 390, 667.
[10]
Menzies J. W., & Wolstencroft R. D., IRAS: 07027-7934 - a Probable New WC11 Sta, 1990, ApJS, 122, 221.
[11]
Gesicki K., Zijlstra A. A., Acker A, Górny S. K., Gozdziewski K., and Walsh J. R., 2006, Planetary nebulae with emission-line central stars, A&A 451, 925–935.
[12]
Baldwin J. A., Ferland G. J., Martin P. G., Corbin M., Cota, S., Peterson B., & Slettebak A., Physical conditions in the Orion Nebula and an assessment of its helium abundance, 1991, ApJ, 374, 580.
[13]
Bains I, Richards A. M. S., T. M. Gledhill T. M., and J. A. Yates J. A., MERLIN polarimetry of the OH masers in IRAS 20406+2953, 2004, MNRAS, 354, 529-542.
[14]
Engels D. and Bunzel F., 2015, A database of circumstellar OH masers, arxiv: 1508. 062200v2, [astro-ph. SR].
[15]
Zijlstra A. A., Te Lintel Hekkert P., Pottasch S. R., Caswell J. L., Ratag M., & Habing H. J., OH maser emission from young planetary nebulae, 1989, A&A, 217, 157.
[16]
Corradi R. L. M., Perinotto M., Schwarz H. E., & Claeskens J-F., The chemical structure of bipolar planetary nebulae. I. IC 4406, 1997, A&A, 322, 975.
[17]
Kwitter K. B., M´endez R. H., Pe˜na M., Stanghellini L., Corradi R. L. M., De Marco O., Fang X., Henry R. B. C, Karakas A. I., Liu X. W., L´opez J. A., Manchado A., and Parker Q. A., 2014, The present and future of planetary nebula research. A white paper by the iau planetary nebula working group, Revista Mexicana de Astronom´ıa y Astrof´ısica, 50, 203–223.
[18]
Wesson R., Barlow M. J., Liu X-W., Storet P. J., Ercolano B., & De Marco O., The hydrogen-deficient knot of the 'born-again' planetary nebula Abell 58 (V605 Aql), 2008, MNRAS 383, 1639-1648.
[19]
Habing H. J., van deer Ven W., & Geballe T., 1987, in the late stages of stellar evolution, ed. Volk S. R., Pottasch S. R., (Dordrecht: Raidel), p, 91.
[20]
Volk K. M., & Kwok S., Spectral evolution of asymptotic giant branch stars, 1988, ApJ, 331, 435.
[21]
Ferland G. J., et al. 2013, Hazy: Introduction to cloudy c13.03.
[22]
Pequignot, D; Amara, M; Liu, XW; Barlow, MJ; Storey, PJ; Morisset, C; Torres-Peimbert, S; (2002) Photoionization models for planetary nebulae with inhomogeneous chemical composition. Ionized Gaseous Nebulae, 12 142-143.
[23]
Henry R. B. C., & Worthey G., The Distribution of Heavy Elements in Spiral and Elliptical Galaxies, 1999, PASP, 111, 919.
[24]
Phillips, J. P., The mean properties of planetary nebulae as a function of Peimbert class, 2005 MNRAS 361, 283-299.
[25]
Pilleri, P., Herberth, D., Giesen, T. F., et al. Search for corannulene (C20H10) in the Red Rectangle 2009, MNRAS, 397, 105.
[26]
Weingartner, J. C. & Draine, B. T. Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud, 2001a, ApJ, 548, 296.
[27]
Harrington J. P., Monk D. J., & Clegg R. E. S., Thermal infrared emission by dust in the planetary nebula NGC 3918 - A model analysis of IRAS observations, 1988, MNRAS, 231, 577.
[28]
Hoare M. G., & Clegg R. E. S., A silicate dust model for the halo planetary DDDM-1, 1988, MNRAS, 235, 1049.
[29]
Asplund, M., Grevesse N., Sauval A. J., & Scott, P. 2009, The Chemical Composition of the Sun, ARA&A, 47, 481.
[30]
Osterbrock D., Tran H., & Veilleux S., Faint emission lines in the spectrum of the Orion Nebula and the abundances of some of the rarer elements, 1992, ApJ, 389, 305.
[31]
Henry R. B. C, Kwitter K. B, Anne E. Jaskot A. E., Balick B., Morrison M. A., and Milingo J. B., 2010, Abundances of galactic anticenter planetary nebulae and the oxygen abundance gradient in the galactic disk, The Astrophysical Journal, 724:748–761.
[32]
Rubin R. H., Colgan S., Dufour R., & Lord, S., The He+/H+ Abundance in the Orion Nebula from Infrared Space Observatory Measurements, 1998, ApJ, 501, L209.
[33]
Shields J. C., & Kennicutt R. C., Consequences of Dust in Metal-rich H II Regions, 1995, ApJ, 454, 809.
[34]
Williams R. E., in IAU Symp. 34, Planetary Nebulae, ed. Osterbrock, D. E. & O'Dell, C. R. (New York, Springer-Verlag), 190, 1968, IAUS, 34, 190.
Browse journals by subject