Volume 8, Issue 1, March 2020, Page: 8-14
Modeling Jupiter with a Multi-layer Spheroidal Liquid Mass Rotating Differentially
Joel Uriel Cisneros-Parra, Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico; Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
Francisco Javier Martinez-Herrera, Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
Daniel Montalvo-Castro, Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
Received: Dec. 18, 2019;       Accepted: Jan. 3, 2020;       Published: Feb. 12, 2020
DOI: 10.11648/j.ajaa.20200801.12      View  451      Downloads  138
Abstract
With the aim of improving the Jupiter equilibrium liquid model consisting of two distorted spheroids (“spheroidals”) of our last paper, we generalize it here to any number l of layers, demanding that the calculated gravitational moments, J2n (n=1,.., 4), agree with those surveyed by the Juno mission, which is fulfilled with a much higher accuracy than for l=2. The layers are of constant density and concentric (but otherwise free from any specific constriction between their semi-axes), each rotating with its own distribution of differential angular velocity, in accordance with our law in a past work. We point out that the angular velocity profiles are a consequence of the equilibrium itself, rather than being imposed ad initio. Although planetary structure aspects are not contemplated in our models, we arrange matters so that they can be compared with Gudkova’s and Guillot’s, paying attention on the distributions of mass and pressure. Our procedure is exact, in contrast with the self-consistent CMS (Concentric Maclaurin Spheroids) method developed by Hubbard, whose inexactitude resides in maintaining a single constant angular velocity while the spheroids are deformed. Our model predicts a differential rotation for Jupiter with periods for pole and equator of 9h38m and 10h14m corresponding to a mean period of 9h55m.
Keywords
Gravitation, Hydrodynamics, Planets and Satellites, General, Stars, Rotation
To cite this article
Joel Uriel Cisneros-Parra, Francisco Javier Martinez-Herrera, Daniel Montalvo-Castro, Modeling Jupiter with a Multi-layer Spheroidal Liquid Mass Rotating Differentially, American Journal of Astronomy and Astrophysics. Vol. 8, No. 1, 2020, pp. 8-14. doi: 10.11648/j.ajaa.20200801.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Cisneros, J. U., F. J. Martínez, & J. D. Montalvo (2019). ApJS, 241, 8.
[2]
Debras, F., G. Chabrier (2019), ApJ 872, 100.
[3]
Miguel, Y. T.\Guillot, L.\Fayon, 2016, A\&A, 596, A114.
[4]
Militzer, B., W. B. Hubbard (2009). Astrophys.\Space Sci., 322, 129.
[5]
Guillot, T. et al. 2018, Nature Let., 555, 227.
[6]
Debras F., G. Chabrier, 2018, A\&A, 609, A97.
[7]
Galanti E., Y. Kaspi, Y. Miguel, et al., 2018, Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL078087.
[8]
Hubbard W. B., B. Militzer, 2016, ApJ, 820: 80.
[9]
Kaspi Y., T. Guillot, E. Galanti, et al., 2017, Geophys. Res. Lett., 44, 5960.
[10]
Militzer B., S. Wahl, W. B. Hubbard, 2019, ApJ, 879: 78.
[11]
Nettelmann N., 2019, ApJ, 874, 156.
[12]
Wahl, S. M., W. B. Hubbard, B. Militzer, 2016, Icarus, 000, 1.
[13]
Wisdom J., W. B. Hubbard, 2016, Icarus, 267, 315.
[14]
Hubbard, W. B., 2012, ApJL, 756: L15.
[15]
Hubbard, W. B., 2013, ApJ, 768: 43, 1.
[16]
Cisneros, J.\U., F.\J.\Martínez,\& J.\D.\Montalvo, RMxAA, 2016, 52, 375.
[17]
Gudkova, T. V., Zharkov, V. N., 1999, Planetary and Space Science, 47, 1211-1224.
[18]
Guillot, T. 1999, Planetary and Space Science, 47, 1183-1200.
[19]
Cisneros, J. U., F. J. Martínez,\& J. D. Montalvo, 2017, ApJ, 848, 109.
[20]
Serra D., G.\Lari, G.\Tomme, et al., 2019, MNRAS, 490, 766-772.
[21]
Iess L., W.\M: \Folkner, D.\Durante, et al., 2018, Nature, 555, 220.
[22]
Bizyaev, I. A., A. V. Borisov, I. S. Mamaev, 2015, Celest. Mech. Dyn. Astr., Springer.
[23]
Montalvo J.\D., F.\J.\Martínez,\& J.\U.\Cisneros, 1983, RMxAA, 5, 293.
[24]
Esteban, E. P., Vasquez, S., 2001, Celest. Mech. Dyn. Astr.. 81 (4), 299–312.
[25]
Helled, R., G.\Schubert, J.\D.\Anderson, 2009, Planetary and Space Science 57, 1467-1473.
[26]
Wahl, S. M. et al. 2017, Geophys. Res. Lett, 44, 4649-4659. Helled, R., E.\Galanti, Y.\Kaspi, 2015, Nature 520, 202-204.
Browse journals by subject