Annual Mean and Correlation of Global Vertical Total Electron Content from Various Global Data Centers
Shambel Gizachew,
Belay Sitotaw,
Gizaw Mengistu
Issue:
Volume 8, Issue 1, March 2020
Pages:
1-7
Received:
21 November 2019
Accepted:
31 December 2019
Published:
21 January 2020
Abstract: The main purpose of this work is to evaluate the annual mean correlations of vertical total electron content provided by GPS, Center for Orbit Determination in Europe (CODE), Jet Propulsion Laboratory (JPL), Polytechnical University of Catalonia (UPC) and European Space Agency (ESA) data centers. The comparisons are aimed at comparability of the different vertical total electron content (VTEC) data sets in terms of times variabilities globally. The Annual mean comparison of these global vertical total electron content are as expected results and also the agreements between the different VTECs from the given data centers also assessed from correlation maps is very good as reflected in correlation exceeding 0.98 among the different data sets with the exception of ESA VTEC. Moreover, the result shows that a distinct feature which exhibit by all data sets is presence of peak VTEC along equatorial latitude belt which fades out with increase in latitude.
Abstract: The main purpose of this work is to evaluate the annual mean correlations of vertical total electron content provided by GPS, Center for Orbit Determination in Europe (CODE), Jet Propulsion Laboratory (JPL), Polytechnical University of Catalonia (UPC) and European Space Agency (ESA) data centers. The comparisons are aimed at comparability of the di...
Show More
Modeling Jupiter with a Multi-layer Spheroidal Liquid Mass Rotating Differentially
Joel Uriel Cisneros-Parra,
Francisco Javier Martinez-Herrera,
Daniel Montalvo-Castro
Issue:
Volume 8, Issue 1, March 2020
Pages:
8-14
Received:
18 December 2019
Accepted:
3 January 2020
Published:
12 February 2020
Abstract: With the aim of improving the Jupiter equilibrium liquid model consisting of two distorted spheroids (“spheroidals”) of our last paper, we generalize it here to any number l of layers, demanding that the calculated gravitational moments, J2n (n=1,.., 4), agree with those surveyed by the Juno mission, which is fulfilled with a much higher accuracy than for l=2. The layers are of constant density and concentric (but otherwise free from any specific constriction between their semi-axes), each rotating with its own distribution of differential angular velocity, in accordance with our law in a past work. We point out that the angular velocity profiles are a consequence of the equilibrium itself, rather than being imposed ad initio. Although planetary structure aspects are not contemplated in our models, we arrange matters so that they can be compared with Gudkova’s and Guillot’s, paying attention on the distributions of mass and pressure. Our procedure is exact, in contrast with the self-consistent CMS (Concentric Maclaurin Spheroids) method developed by Hubbard, whose inexactitude resides in maintaining a single constant angular velocity while the spheroids are deformed. Our model predicts a differential rotation for Jupiter with periods for pole and equator of 9h38m and 10h14m corresponding to a mean period of 9h55m.
Abstract: With the aim of improving the Jupiter equilibrium liquid model consisting of two distorted spheroids (“spheroidals”) of our last paper, we generalize it here to any number l of layers, demanding that the calculated gravitational moments, J2n (n=1,.., 4), agree with those surveyed by the Juno mission, which is fulfilled with a much higher accuracy t...
Show More