Research Article
The Contribution of Host Galaxy Properties in X-Ray Active Galactic Nuclei Clusters
Gutu Mekonen*,
Anno Kare
Issue:
Volume 11, Issue 2, June 2024
Pages:
33-50
Received:
22 May 2024
Accepted:
14 June 2024
Published:
29 June 2024
Abstract: In this study, the influence of host galaxy properties on X-ray active galactic nuclei (AGN) clusters was investigated using multiwavelength data. X-ray data from the eFEDS main catalog, optical and near-infrared data from the fourth data release of KiDS/VIKING, and mid-infrared data from WISE were utilized. By integrating these datasets and employing the CIGALE code, the star formation rate, luminosity, and stellar mass of the host galaxies were estimated. The analysis reveals significant associations between luminosity, stellar mass, and star formation rate, providing valuable insights into AGN activity. Furthermore, AGN clusters were compared with non-AGN clusters to uncover distinctive characteristics. AGN clusters exhibit differences in their population across various luminosity levels. Interestingly, a significant proportion of AGN clusters is concentrated in the middle range of luminosity (45-46 measured in logL(0.5-2.0 keV)) for both low and high redshift classifications. Additionally, galaxies hosting AGNs detected in X-ray emission tend to fall within a specific range of stellar mass (10-11 measured in log(M⋆(M⊚)). This stellar mass range is populated by a substantial number of AGN galaxies, irrespective of their redshift classification. Moreover, a significant population of X-ray AGN is concentrated within the star formation rate range of 1.5-2.5 (expressed in log(M⊚ yr-1)) in both low and high redshift regions. By analyzing the dependencies on luminosity, stellar mass, and star formation rate, this study provides valuable insights into the correlation and relationship between AGN clusters and their host galaxies. The comparison with non-AGN clusters and the integration of multiwavelength data from eFEDS, KiDS/VIKING, and WISE enhance the depth of analysis, contributing to a comprehensive evaluation of AGN clusters. These findings advance our understanding of the complex relationship between AGN clusters and host galaxy properties in the field of astrophysics.
Abstract: In this study, the influence of host galaxy properties on X-ray active galactic nuclei (AGN) clusters was investigated using multiwavelength data. X-ray data from the eFEDS main catalog, optical and near-infrared data from the fourth data release of KiDS/VIKING, and mid-infrared data from WISE were utilized. By integrating these datasets and employ...
Show More
Research Article
An Analytical Model for Cosmology with a Single Input, the Redshift
Naser Mostaghel*
Issue:
Volume 11, Issue 2, June 2024
Pages:
51-64
Received:
1 June 2024
Accepted:
25 June 2024
Published:
8 July 2024
Abstract: We propose an analytical model for cosmology which requires only one parameter as an input. This parameter is the redshift. The model is based on conservation of energy, Planck’s Radiation Law, and the relation between energy and frequency of waves. The model yields the current age of the universe, the age of the universe at the CMB emission, as well as the time histories of its expansion velocity and acceleration. The model also is used to show the existence of a constant energy per unit area, associated with the momentum energy of photons, which generates the pressure that perpetuates the expansion of the universe. The model is completely independent of the ɅCDM model but implicitly includes the effects of gravity. Using the model we show the existence of a constant in nature that under certain assumptions can represent the Hubble constant. We have used the model to derive the Hubble constants measured by Reiss et al. and by the Planck Collaboration. Using the model we show that the path of light in the Planck collaboration measurement is along a circular arc, while the Reiss et al. measurement path is exactly along the chord of the same circular arc. The difference in the light travel times along these two paths matches exactly the difference between the two measured values for the Hubble constant, as measured by Reiss et al. and as measured by the Planck Collaboration. This result explains the cause of tension between the two methods of measurement.
Abstract: We propose an analytical model for cosmology which requires only one parameter as an input. This parameter is the redshift. The model is based on conservation of energy, Planck’s Radiation Law, and the relation between energy and frequency of waves. The model yields the current age of the universe, the age of the universe at the CMB emission, as we...
Show More